Monitoring Mineral Surface Phenomena by Infrared Reflection Spectroscopy
نویسندگان
چکیده
Determination of the mineral surface composition and structure at molecular and atomic levels and understanding adsorption mechanisms and kinetics are crucial to perform efficient separation processes for mineral beneficiation. This understanding is a fundamental requirement to make possible the prediction and control of the macroscopic surface properties that govern the efficiency of separation technologies. The developed infrared external reflection technique has a unique ability to study interface phenomena at a molecular level on heterogeneous substrates. The variety, precision and reliability of information about interface phenomena delivered by this technique are superior to other single techniques. The experiments are fast and non-destructive. High sensitivity (part of monolayer), insitu collected information in a multiphase system even in the region of a strong absorption of substrate, makes this technique a very valuable experimental tool. The complexity of the recorded reflection spectra, their sensitivity to any variations of the optical properties of all bulk and surface components and their spatial distribution in the system under investigation, are in fact the major strength of the technique. In this paper a few examples of application of this multidiagnostic technique for monitoring surface modifications of sulphide and semisoluble minerals for selective flotation are overviewed in detail.
منابع مشابه
In situ monitoring of the DNA hybridization by attenuated total reflection surface-enhanced infrared absorption spectroscopy.
In situ monitoring of DNA hybridization kinetics is achieved via an attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) technique using a sandwich assay structure. The synergistic enhancement effect gives this ATR-SEIRAS-based detection strategy promise to be a convenient and unique platform for bioanalysis.
متن کاملQuantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy.
We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrar...
متن کاملStudy on reflection of human skin with liquid paraffin as the penetration enhancer by spectroscopy.
Optical clearing agents can improve tissue optical transmittance by reducing the diffuse reflection. The reflection on in vivo human skin before and after applying anhydrous glycerol and 30 to 50% liquid paraffin glycerol mixed solution are investigated in this paper. From their visible and near-infrared reflection spectroscopy, all of their diffuse reflections are reduced after applying the ag...
متن کاملAngle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance.
Surface enhanced infrared absorption (SEIRA) spectroscopy is an attractive method for increasing the prominence of vibrational modes in infrared spectroscopy. To date, the majority of reports associated with SEIRA utilize localized surface plasmon resonance from metal nanoparticles to enhance electromagnetic fields in the region of analytes. Limited work has been performed using propagating sur...
متن کاملInfrared Attenuated Total Reflectance Spectroscopy: An Innovative Strategy for Analyzing Mineral Components in Energy Relevant Systems
The direct qualitative and quantitative determination of mineral components in shale rocks is a problem that has not been satisfactorily resolved to date. Infrared spectroscopy (IR) is a non-destructive method frequently used in mineral identification, yet challenging due to the similarity of spectral features resulting from quartz, clay, and feldspar minerals. This study reports on a significa...
متن کامل